Identification and characterization of the maize arogenate dehydrogenase gene family
نویسندگان
چکیده
In plants, the amino acids tyrosine and phenylalanine are synthesized from arogenate by arogenate dehydrogenase and arogenate dehydratase, respectively, with the relative flux to each being tightly controlled. Here the characterization of a maize opaque endosperm mutant (mto140), which also shows retarded vegetative growth, is described The opaque phenotype co-segregates with a Mutator transposon insertion in an arogenate dehydrogenase gene (zmAroDH-1) and this led to the characterization of the four-member family of maize arogenate dehydrogenase genes (zmAroDH-1-zmAroDH-4) which share highly similar sequences. A Mutator insertion at an equivalent position in AroDH-3, the most closely related family member to AroDH-1, is also associated with opaque endosperm and stunted vegetative growth phenotypes. Overlapping but differential expression patterns as well as subtle mutant effects on the accumulation of tyrosine and phenylalanine in endosperm, embryo, and leaf tissues suggest that the functional redundancy of this gene family provides metabolic plasticity for the synthesis of these important amino acids. mto140/arodh-1 seeds shows a general reduction in zein storage protein accumulation and an elevated lysine phenotype typical of other opaque endosperm mutants, but it is distinct because it does not result from quantitative or qualitative defects in the accumulation of specific zeins but rather from a disruption in amino acid biosynthesis.
منابع مشابه
Cyclohexadienyl dehydrogenase from Pseudomonas stutzeri exemplifies a widespread type of tyrosine-pathway dehydrogenase in the TyrA protein family.
The uni-domain cyclohexadienyl dehydrogenases are able to use the alternative intermediates of tyrosine biosynthesis, prephenate or L-arogenate, as substrates. Members of this TyrA protein family have been generally considered to fall into two classes: sensitive or insensitive to feedback inhibition by L-tyrosine. A gene (tyrA(c)) encoding a cyclohexadienyl dehydrogenase from Pseudomonas stutze...
متن کاملA single cyclohexadienyl dehydrogenase specifies the prephenate dehydrogenase and arogenate dehydrogenase components of the dual pathways to L-tyrosine in Pseudomonas aeruginosa.
Dual biosynthetic pathways diverge from prephenate to L-tyrosine in Pseudomonas aeruginosa, with 4-hydroxyphenylpyruvate and L-arogenate being the unique intermediates of these pathways. Prephenate dehydrogenase and arogenate dehydrogenase activities could not be separated throughout fractionation steps yielding a purification of more than 200-fold, and the ratio of activities was constant thro...
متن کاملA core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis.
The TyrA protein family includes prephenate dehydrogenases, cyclohexadienyl dehydrogenases and TyrA(a)s (arogenate dehydrogenases). tyrA(a) from Synechocystis sp. PCC 6803, encoding a 30 kDa TyrA(a) protein, was cloned into an overexpression vector in Escherichia coli. TyrA(a) was then purified to apparent homogeneity and characterized. This protein is a model structure for a catalytic core dom...
متن کاملA Single Cyclohexadienyl Dehydrogenase Specifies the Prephenate Dehydrogenase and Arogenate Dehydrogenase Components of the Dual Pathways to L-Tyrosine in Pseudomonas aeruginosa*
Dual biosynthetic pathways diverge from prephenate to L-tyrosine in Pseudomonas aeruginosa, with 4-hydroxyphenylpyruvate and L-arogenate being the unique intermediates of these pathways. Prephenate dehydrogenase and arogenate dehydrogenase activities could not be separated throughout fractionation steps yielding a purification of more than 200-fold, and the ratio of activities was constant thro...
متن کاملPhylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway.
The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogena...
متن کامل